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Diffraction corrections in radiometry: spectral
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Wolf ’s result for integrated flux in the case of diffraction by a circular lens or aperture in the scalar, paraxial
Fresnel approximation is considered anew. Compact integral formulas for pertinent infinite sums are derived,
and the result’s generalizations to extended sources and Planckian sources and asymptotic aspects at small
wavelength and high temperature are all considered. Simplification of calculations for an actual absolute ra-
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1. INTRODUCTION
In radiometry, one often studies an optical setup with a
coaxial circular source, circular aperture or lens, and cir-
cular detector, such as that shown in Fig. 1. One may de-
sire to learn the source radiance L, source spectral radi-
ance Ll(l) at wavelength l, aperture area, or detector
response to a known incident power. A radiometric mea-
surement can help determine the value of one of the
above quantities if enough of the others are known.
However, one must often account for diffraction of radia-
tion by the aperture, and the effects of diffraction on ra-
diometric measurements have been studied by Lommel,1

Wolf,2 Focke,3 Blevin,4 Steel et al.,5 Boivin,6 Shirley,7 Ed-
wards and McCall,8 and others.

In this work, diffraction effects on spectral power
reaching the detector and total power reaching the detec-
tor in the case of a Planckian source are considered anew.
This is done within scalar diffraction theory in the
paraxial Fresnel approximation. The starting point is a
formula derived by Wolf for diffraction effects on spectral
power in combination with a recently developed scheme to
treat broadband radiation.9 In a wide range of geom-
etries specified in Section 2, either asymptotic formulas or
simple numerical integrals, both of which are derived
here, should permit a complete, efficient characterization
of diffraction effects for all wavelengths or source tem-
peratures, as appropriate. Asymptotic properties of dif-
fraction effects at small l or high temperature T are de-
termined to several orders in a small parameter
proportional to l or 1/T.

2. BACKGROUND
If the dimensions of optical elements are as indicated in
Fig. 1 and f is the focal length of the lens, with an aper-
ture corresponding to f 5 6`, one may first introduce the
parameters

u 5 ~2pRa
2/l!~1/ds 1 1/dd 2 1/f !,

vs 5 ~2p/l!~RsRa /ds!,
vd 5 ~2p/l!~RdRa /dd!,

v0 5 max~vs , vd!,

s 5 min~vs , vd!/max~vs ,vd!. (1)

For the case of a point source located in the source plane
on the optical axis, which corresponds to the limit Rs
→ 0, implying v0 5 vd and s 5 0, Wolf provides a conve-
nient expression for the fraction of spectral power passing
through the aperture or lens that lands on the detector,
denoted L(u, v), with v 5 v0 5 vd . Introducing

Q2s~v ! 5 (
p50

2s

~21 !p@Jp~v !J2s2p~v ! 1 Jp11~v !J2s112p~v !#

(2)

and

Yn~u, v ! 5 (
s50

`

~21 !s~n 1 2s !~v/u !n12sJn12s~v !, (3)

Wolf provides two equivalent expressions for L(u, v).
One expression is convenient for uv/uu , 1, and the other
expression is convenient for uv/uu . 1. If one introduces
the additional functions

LB~v, w ! 5 (
s50

`

~21 !sw2sQ2s~v !/~2s 1 1 ! (4)

and, with g 5 (w 1 1/w)/2,

LX~v, w ! 5 ~4w/v !@Y1~v/w, v !cos~ gv !

1 Y2~v/w, v !sin~ gv !#, (5)

Wolf shows that L(u, v) 5 1 2 LB(v, w), with w 5 u/v
for uv/uu . 1, and L(u, v) 5 w2@1 1 LB(v, w)#
2 LX(v, w), with w 5 v/u for uv/uu , 1. When L(u, v)
is so expressed as a function of v and w, the right-hand
side depends on l only through v, and not through w,
which does not depend on l.

For the case of an extended source, one can relate the
spectral power Fl(l) that reaches the detector to source
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spectral radiance through an expression derived by
Shirley7 and related to Wolf ’s result by Edwards and
McCall.8 This gives

Fl~l! 5 CE
21

1

dx~1 1 sx !21$~1 2 x2!@~2 1 sx !2

2 s 2#%1/2L(u, v0~1 1 sx !)Ll~l!, (6)

with C 5 4p4Ra
4Rs

2Rd
2/@ds

2dd
2(lv0)2#. Henceforth,

the argument v0(1 1 sx) may be abbreviated v or a/l.
Note that a is independent of l, and that dependence of a
on the setup geometry and x is implicit. We now make
the restriction in this work that geometries considered
should never involve a value of w that is too close to unity.
This means that an overfilled detector or oversampled
source should be well overfilled or oversampled, respec-
tively, and that an underfilled detector or undersampled
source should be well underfilled or well undersampled,
respectively. As an example, in Fig. 1 the detector perim-
eter should be well outside the larger dashed circle in the
detector plane. However, it should be well inside the
smaller dashed circle in the case of a nonlimiting aper-
ture.

Because we have v0 } l21, C is independent of l.
Therefore the only dependence of the right-hand side on l
occurs because of L(u, v) and Ll(l). Furthermore, just
as in the case of a point source, because we have either

L(u, v0~1 1 sx !) 5 L~u, v ! 5 1 2 LB~v, w !

5 1 2 LB~a/l, w ! (7)

or

L(u, v0~1 1 sx !) 5 L~u, v !

5 w2@1 1 LB~v, w !# 2 LX~v, w !

5 w2@1 1 LB~a/l, w !# 2 LX~a/l, w !,

(8)

the dependence of the rightmost expressions for
L(u, v0(1 1 sx)) on l arises through v 5 a/l alone, and
not through w.

For a thermal source with emissivity e, the total power
reaching the detector is

Fig. 1. Class of optical setup considered in this work. The ap-
erture can be limiting (as shown in this case) or nonlimiting.
F 5 CE
21

1

dx~1 1 sx !21$~1 2 x2!@~2 1 sx !2

2 s 2#%1/2E
0

`

dlL~u, v !Ll~l!, (9)

where one has

Ll~l! 5
ec1

pl5 FexpS c2

lT D 2 1G21

. (10)

If we introduce the parameter

A 5 c2 /~aT ! (11)

and change the variable of integration from l to v, we
have either

E
0

`

dlL~u, v !Ll~l! 5
ec1

pa4 E
0

` dvv3

exp~Av ! 2 1

3 @1 2 LB~v, w !#

5
ec1

pa4 F6z~4 !

A4 2 FB~A, w !G (12)

or

E
0

`

dlL~u, v !Ll~l!

5
ec1

pa4 E
0

` dvv3

exp~Av ! 2 1
$w2@1 1 LB~v, w !#

2 LX~v, w !%

5
ec1

pa4 F6w2z~4 !

A4 1 w2FB~A, w ! 2 FX~A, w !G . (13)

Here we have introduced the functions

FB~A, w ! 5 E
0

` dvv3

exp~Av ! 2 1
LB~v, w !, (14)

FX~A, w ! 5 E
0

` dvv3

exp~Av ! 2 1
LX~v, w !, (15)

as well as the Riemann zeta function z(z) 5 (n51
` n2z for

z . 1.
The above developments provide a way to predict spec-

tral or total power reaching the detector with diffraction
effects taken into account. Neglect of diffraction effects
amounts to setting LB(v, w) 5 LX(v, w) 5 0 or
FB(A, w) 5 FX(A, w) 5 0.

3. EVALUATION OF LB(v, w) AND
FB(A, w)
From the integral representation of a Bessel function,

Jm~v ! 5
~2i !m

2p
E

0

2p

du exp~ivx 1 imu!, (16)
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where we use the shorthand x 5 cos u, we have

(
p50

2s

~21 !pJp~v !J2s2p~v !

5 ~21 !s (
p52s

s

~21 !pJs1p~v !Js2p~v !

5 ~21 !s (
p52s

s

~21 !pH i2s2p

2p
E

0

2p

du exp~ivx !

3 exp@i~s 1 p !u#J
3 H i2s1p

2p
E

0

2p

du8 exp~ivx8!exp@i~s 2 p !u8#J . (17)

For real v, Js2p(v) is real. One may therefore replace 1i
with 2i everywhere in the related integral representa-
tion. Simplification gives

(
p50

2s

~21 !pJp~v !J2s2p~v !

5 ~21 !s (
p52s

s

~21 !pH i2s2p

2p
E

0

2p

du

3 exp@i~vx 1 su 1 pu!#J
3 H is2p

2p
E

0

2p

du8 exp@i~2vx8 2 su8 1 pu8!#J
5

~21 !s

~2p!2 (
p52s

s E
0

2p

du exp@i~vx 1 su 1 pu!#

3 E
0

2p

du8 exp@i~2vx8 2 su8 1 pu8!#

5
~21 !s

~2p!2 E
0

2p

du exp~ivx !E
0

2p

du8 exp~2ivx8!

3 hsS h2s11 2 h22s21

h 2 h21 D (18)

with h 5 exp@i(u 1 u8)/2# and h 5 exp@i(u 2 u8)#. Similar
analysis gives

(
p50

2s

~21 !pJp11~v !J2s112p~v !

5
~21 !s

~2p!2 E
0

2p

du exp~ivx !E
0

2p

du8 exp~2ivx8!

3 hs11S h2s11 2 h22s21

h 2 h21 D , (19)

from which one may deduce
Q2s~v ! 5
~21 !s

~2p!2 E
0

2p

du exp~ivx !E
0

2p

du8 exp~2ivx8!

3 S 1 1 h

h 2 h21D @h~hh2!s 2 h21~hh22!s#.

(20)

Introducing w1 5 w exp(iu) and w2 5 w exp(2iu8) we
have

LB~v, w ! 5 (
s50

`

~21 !sw2sQ2s~v !/~2s 1 1 !

5
1

~2p!2 E
0

2p

du exp~ivx !E
0

2p

du8 exp~2ivx8!

3 S 1 1 h

h 2 h21D S h(
s50

` w1
2s

2s 1 1

2 h21(
s50

` w2
2s

2s 1 1 D
5

1

~2p!2 E
0

2p

du exp~ivx !E
0

2p

du8 exp~2ivx8!

3 S 1 1 h

h 2 h21D F h

2w1
logeS 1 1 w1

1 2 w1
D

2
h21

2w2
logeS 1 1 w2

1 2 w2
D G . (21)

Here one uses a version of the log function that has the
indicated series expansion. One way to do this is to have
loge 1 5 0 and have the branch cut on the negative real
axis. For FB(A, w) one has

FB~A, w ! 5 E
0

` dvv3

exp~Av ! 2 1
LB~v, w !

5
1

2
E

0

` dvv3

exp~Av ! 2 1
@LB~v, w ! 1 LB~2v, w !#

5
3

~2p!2 E
0

2p

duE
0

2p

du8S 1 1 h

h 2 h21D
3 F h

2w1
logeS 1 1 w1

1 2 w1
D

2
h21

2w2
logeS 1 1 w2

1 2 w2
D GS~A, x 2 x8!, (22)

with
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S~x, y ! 5 S~x, 2y ! 5 (
n51

`

@~nx 1 iy !24 1 ~nx 2 iy !24#.

(23)

S(x, y) and methods to evaluate it are discussed
elsewhere.9 A short summary is as follows. For positive
x and y, one can introduce z 5 2py/x and f 5 1/@1
2 exp(2z)#. One has

S~x, y ! 5 2~2p/x !4@1/z4 1 ~ f 2 7f 2 1 12 f 3 2 6f 4!/6#.
(24)

This is useful except when z ! 1, when one may use

S~x, y ! 5 32p4/x4@1/1440 2 z2/6048 1 z4/69120 2 ¯#.
(25)

At small v or large A, the above integrals may be evalu-
ated numerically. However, asymptotic expansions for
the integrals are desirable at large v or small A, as de-
scribed below. Obtaining the same results at intermedi-
ate values of v or A by both methods helps ensure efficacy
of asymptotic expansions and numerical integration at ex-
treme values of v or A.

A. Evaluation of LB(v, w) at Large v
For large positive v, evaluation of Q2s(v) can be simpli-
fied by using an asymptotic expression for Bessel func-
tions of large nonnegative argument10:

Jm~v ! ; ~2/pv !1/2F cos z(
s50

`

~21 !sA2s~m !v22s

2 sin z(
s50

`

~21 !sA2s11~m !v2~2s 1 1 !G , (26)

with z 5 v 2 mp/2 2 p/4, A0(m) 5 1, and As(m)
5 (4m2 2 12)(4m2 2 32)...@4m2 2 (2s 2 1)2#/@8s(s!)#
for all other s. When using this expression for Jm(v) in
Q2s(v) one obtains terms divided by increasing powers of
v. If one collects and simplifies the result, one can obtain

Q2s~v ! 5 ~21 !s~2s 1 1 !F 2

pv
2

cos 2v

pv2

2
16s4 1 32s3 1 8s2 2 8s 2 3

12pv3

1 S 8s2 1 8s 2 1

4pv3 D sin~2v !

1 S 64s4 1 128s3 2 16s2 2 80s 1 9

32pv4 D cos~2v !G
1 O~v25!. (27)

To sum over s to obtain LB(v, w), it is helpful to intro-
duce the shorthand

sk 5 (
s50

`

skw2s 5 Fw2
d

d~w2!
Gk 1

1 2 w2 5
Wk~w2!

~1 2 w2!k11 ,

(28)

where the first few Wk polynomials are

W0~x ! 5 1, W3~x ! 5 x3 1 4x2 1 x,
W1~x ! 5 x, W4~x ! 5 x4 1 11x3 1 11x2 1 x,

W2~x ! 5 x2 1 x,

W5~x ! 5 x5 1 26x4 1 66x3 1 26x2 1 x. (29)

This gives

LB~v, w ! 5 (
s50

`

~21 !sw2sQ2s~v !/~2s 1 1 !

5 F2s0

pv
2

s0 cos~2v !

pv2

2
16s4 1 32s3 1 8s2 2 8s1 2 3s0

12pv3

1 S 8s2 1 8s1 2 s0

4pv3 D sin~2v !

1 S 64s4 1 128s3 2 16s2 2 80s1 1 9s0

32pv4 D
3 cos~2v !G 1 O~v25!. (30)

B. Evaluation of FB(A, w) at Small A
At small A, one may first find the analytic properties of
the following as a function of A and s:

I2s~A ! 5 E
0

` dvv3

exp~Av ! 2 1
Q2s~v ! 5 (

n50

`

i2s~nA !,

(31)

with

i2s~A ! 5 E
0

`

dvv3 exp~2Av !Q2s~v !, (32)

and then evaluate FB(A, w) 5 (s50
` (21)sw2sI2s(A)/(2s

1 1). Because this sum involves a geometric series in w
that is always less than unity, one can sum over s numeri-
cally. One can also sum contributions at various orders
in A over s analytically. Many of the resulting analytical
expressions are lengthy, and we do not discuss them fur-
ther here. Numerical summation over s is less practical
when w is very close to unity.

From the series expansions of Bessel functions of non-
negative integer orders a and b, we have
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Ja~v !Jb~v ! 5 S v

2 D a1b

(
r50

`

(
s50

`
~2v2/4!r1s

r!s!~r 1 a !!~s 1 b !!

5 S v

2 D a1b

(
m50

` S 2
v2

4 D m

(
k50

m

@k!~m 2 k !!~k

1 a !!~m 1 b 2 k !!#21

5 S v

2 D a1b

(
m50

` S 2
v2

4 D m

(
k50

m

$k!~m 1 b

2 k !!~m 2 k !!@m 1 a 2 ~m 2 k !#!%21

5 S v

2 D a1b

(
m50

` S 2
v2

4 D m

@~m 1 a !!~m

1 b !!#21(
k50

m S m 1 b
k D S m 1 a

m 2 k D

5 S v

2 D a1b

(
m50

` S 2
v2

4 D m

@~m 1 a !!~m

1 b !!#21S 2m 1 a 1 b
m D . (33)

Therefore the integral

E
0

`

dvv31a1b12m exp~2Av ! 5
G~2m 1 a 1 b 1 4 !

A2m1a1b14

(34)

implies that we have

E
0

`

dvv3 exp~2Av !Ja~v !Jb~v !

5
1

2a1bAa1b14 (
m50

` S 2
1

4A2D m

3
G~2m 1 a 1 b 1 4 !G~2m 1 a 1 b 1 1 !

~m 1 a !!~m 1 b !!m!G~m 1 a 1 b 1 1 !
.

(35)
Generalizing this to Wolf ’s result, we have
with

T~M, 2s ! 5 (
p50

2s

~21 !p@~M 1 p !!~M 1 2s 2 p !!#21

5 ~21 !s (
p52s

s

~21 !p@~M 1 s 1 p !!~M 1 s

2 p !!#21. (37)

From combinatorics, we have T(0, 2s) 5 ds,0 and

T~M, 2s !uM.0 5 @~M 1 s !G~M !G~1 1 M 1 2s !#21.
(38)

We know this, using

T~0, 2s ! 5
1

~2s !! (p50

2s S 2s
p D ~21 !p 5

~1 2 1 !2s

~2s !!
5 ds,0 ,

(39)

and we may deduce the value of T(M, 2s) for M . 0 us-
ing

T~M, 2s !uM.0 5
~21 !M

~2M 1 2s !! (
p52s

s E
0

2p du

2p
exp~2ipu!

3 @exp~iu! 2 exp~2iu!#2M12s. (40)

Abbreviating z 5 (4A2)21, we can expand the sum
over c and partition terms with m 1 c 5 0 from the oth-
ers to obtain

Fig. 2. Contour integration for Barnes’s integral for hypergeo-
metric function discussed in text, for s 5 0.
i2s~A ! 5 (
c50

1 1

22s12cA2s12c14 (
m50

` S 2
1

4A2D m G~2m 1 2s 1 2c 1 4 !G~2m 1 2s 1 2c 1 1 !T~m 1 c, 2s !

m!G~m 1 2s 1 2c 1 1 !
, (36)
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i2s~A ! 5 6A24ds,0 1
1

A4~2A !2s (
m50

`

z~2z !m

3
G~2m 1 2s 1 6 !G~2m 1 2s 1 3 !

m!G~m 1 2s 1 3 !~m 1 1 1 s !G~m 1 1 !G~m 1 2s 1 2 !

1
1

A4~2s !2s (
m50

`

~2z !m11
G~2m 1 2s 1 6 !G~2m 1 2s 1 3 !

~m 1 1 !!G~m 1 2s 1 2 !~m 1 1 1 s !G~m 1 1 !G~m 1 2s 1 2 !
, (41)

which simplifies to

i2s~A ! 5 6A24ds,0 1
z

A4~2A !2s (
m50

`
~2z !m

m!

G~2m 1 2s 1 6 !G~2m 1 2s 1 3 !

~m 1 1 1 s !G~m 1 2s 1 2 !
F 1

m!G~m 1 2s 1 3 !

2
1

~m 1 1 !!G~m 1 2s 1 2 !
G

5 6A24ds,0 1
2

22s12A2s16 (
m50

`
~2z !mG~2m 1 2s 1 6 !G~2m 1 2s 1 2 !

m!G~m 1 2s 1 2 !
F ~m 1 1 ! 2 ~m 1 2s 1 2 !

~m 1 1 !!G~m 1 2s 1 3 !
G

5 6A24ds,0 2
2~2s 1 1 !

22s12A2s16 (
m50

` S ~2z !m

m! D G~2m 1 2s 1 6 !G~2m 1 2s 1 2 !

G~m 1 2 !G~m 1 2s 1 2 !G~m 1 2s 1 3 !
. (42)

By using G(x 1 1) 5 xG(x), we have G(x 1 2m) 5 G(x)22m@(x 1 1)/2#m(x/2)m and

i2s~A ! 5 6A24ds,0 2
2~2s 1 1 !G~2s 1 6 !G~2s 1 2 !

22s12A2s16 (
m50

` S ~2z !m

m! D 24m~s 1 3 !m~s 1 7/2!m~s 1 1 !m~s 1 3/2!m

G~2 !G~2s 1 2 !G~2s 1 3 !~2 !m~2s 1 2 !m~2s 1 3 !m
.

(43)

From 24m(2z)m 5 (24/A2)m, G(2) 5 1, and G(2s 1 6)/G(2s 1 3) 5 (2s 1 5)(2s 1 4)(2s 1 3), we have

i2s~A ! 5 6A24ds,0 2
2~2s 1 1 !~2s 1 3 !~2s 1 4 !~2s 1 5 !

22s12A2s16 (
m50

` S ~24/A2!m

m! D ~s 1 3 !m~s 1 7/2!m~s 1 1 !m~s 1 3/2!m

~2 !m~2s 1 2 !m~2s 1 3 !m

5 6A24ds,0 2 S 2~2s 1 1 !~2s 1 3 !~2s 1 4 !~2s 1 5 !

22s12A2s16 D
3 4F3~s 1 1, s 1 3/2, s 1 3, s 1 7/2;2, 2s 1 2, 2s 1 3;24/A2!. (44)

From Barnes integral representation of a generalized hypergeometric function,11 we have

4F3~s 1 1, s 1 3/2, s 1 3, s 1 7/2;2, 2s 1 2, 2s 1 3; 2 4/A2!

5
1

2pi

G~2 !G~2s 1 2 !G~2s 1 3 !

G~s 1 1 !G~s 1 3/2!G~s 1 3 !G~s 1 7/2!

3 E
D

dt
G~s 1 1 1 t !G~s 1 3/2 1 t !G~s 1 3 1 t !G~s 1 7/2 1 t !G~2t !exp~lt !

G~2 1 t !G~2s 1 2 1 t !G~2s 1 3 1 t !
. (45)

We have introduced the parameter l 5 loge(4/A2) to express (4/A2) t as an exponential. The contour D in the complex-t
plane should run from 2i` to 1i` and pass to the left of all poles in G(2t) but to the right of all other poles in the
integrand. If we note

2~2s 1 1 !~2s 1 3 !~2s 1 4 !~2s 1 5 !G~2s 1 2 !G~2s 1 3 !

22s12A2s16G~s 1 1 !G~s 1 3/2!G~s 1 3 !G~s 1 7/2!
5

2~2s 1 1 !

22s12A2s16 S G~2s 1 2 !

G~s 1 1 !G~s 1 3/2!
D S G~2s 1 6 !

G~s 1 3 !G~s 1 7/2!
D

5
2~2s 1 1 !

22s12A2s16 S 22~s11 !21

G~1/2!
D S 22~s13 !21

G~1/2!
D 5

2s 1 1

2p
S 2

A D 2s16

,

(46)

the combination of Eq. (44), Eq. (45), and Eq. (46) gives
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i2s~A ! 5
6

A4 ds,0 2
2s 1 1

2p
S 2

A D 2s16 1

2pi
E

D
dt

G~s 1 1 1 t !G~s 1 3/2 1 t !G~s 1 3 1 t !G~s 1 7/2 1 t !G~2t !exp~lt !

G~2 1 t !G~2s 1 2 1 t !G~2s 1 3 1 t !
.

(47)

By initially placing the contour D just to the left of the imaginary axis, we may also deduce

I2s~A ! 5
6z~4 !ds,0

A4

2
~2s 1 1 !4s13

4p2iA2s16 E
D

dt
G~s 1 1 1 t !G~s 1 3/2 1 t !G~s 1 3 1 t !G~s 1 7/2 1 t !G~2t !z~2s 1 2t 1 6 !exp~lt !

G~2 1 t !G~2s 1 2 1 t !G~2s 1 3 1 t !
.

(48)
This uses z(z) 5 (n51
` n2z for Re z . 1.

Analytic continuation of the integrand and deformation
of D leads to a term-by-term series expansion of I2s(A) in
increasing powers of A and powers of A multiplied by
loge A. Because of this, we have a result of the form

I2s~A ! ; (
p524

`

~Cs, p 1 Ls, p loge A !Ap. (49)

The first few terms of this expansion give a very accurate
result at sufficiently small A. This complements the
double numerical integration described earlier, which is
increasingly difficult at small A. The strategy used is as
follows: One tries to move the entire contour D to the left
as far as possible. As this is done, poles are encountered
on the real axis and nowhere else in the left half-plane.
The contour must cross the real axis to the right of these
poles. Near the real axis, D can take a detour that runs
just below the real axis to the right, circles the right-most
pole in counterclockwise fashion, and runs just above the
real axis to the left. Figure 2 illustrates this for s 5 0.
In the limit of small A, contributions to the integral at in-
creasing orders in A arise from circling poles on the real
axis in counterclockwise fashion. The residues deter-
mine the expansion coefficients.

The integrand contains many factors in the numerator
and denominator, several of which can have poles and–or
zeros. These factors ‘‘conspire’’ to form an overall pole
structure of the integrand. One or more poles in these
factors coincide if they occur at the same value of t. The
denominator of the integrand has no zeros, so it does not
contribute in this way to the pole structure of the inte-
grand. However, poles in the denominator coincident
with poles in the numerator can negate or modify the lat-
ter’s effects. Poles in the numerator occur at certain in-
teger and half-integer values of t. Up to two poles can
coincide in the factors in the numerator without being
canceled by poles in the factors in the denominator.
Therefore, the relevant pole structure of the integrand is
fully determined if one expands every factor to at least
one order beyond lowest order about the value of t at
which any factor is singular. One has

G~z 1 e! 5 G~z !@1 1 ec ~z !# 1 O~e2!,

except near z 5 2N, N 5 0, 1, 2,..., where one has

G~z 1 e! 5 G~2N 1 e! 5 @~21 !N/N!#@1/e 1 c ~N 1 1 !#

1 O~e!.
One has

z~z 1 e! 5 z~z ! 1 ez8~z ! 1 O~e2!,

except near z 5 1, where one has

z~z 1 e! 5 z~1 1 e! 5 1/e 1 g 1 O~e!.

Finally, one has

exp@l~z 1 e!# 5 @1 1 el 1 O~e2!#exp~lz !

everywhere.
Poles at integer t, which correspond to even values of p,

can arise from the factors G(s 1 1 1 t) and G(s 1 3
1 t). For s 5 0, G(s 1 1 1 t) and the integrand have a
simple pole at t 5 21, giving a contribution to I2s(A) of

2
1

2p
S 2

A D 6S G~1/2!G~2 !G~5/2!G~1 !z~4 !~4/A2!21

G~1 !G~1 !G~2 !
D

5 2
6z~4 !

A4 . (50)

For s . 0, the pole at s 1 1 1 t 5 0 has no effect at t
5 21 because it coincides with a pole in the denomina-
tor, and the integrand is regular. Thus the leading term
in Eq. (48) is exactly canceled, and we have Cs,24
5 Ls,24 5 0 for all s.

If, and only if, we have 22s 2 2 , t < 2 s 2 3, there
is one more pole in the factors G(s 1 1 1 t) and G(s
1 3 1 t) than in the factors in the denominator. The in-
equality can be fulfilled only for s . 1. However, the Rie-
mann zeta function crosses zero at all negative, even in-
tegers, so the only other pole of the integrand at integer t
occurs at t 5 2s 2 3 for s . 1, for which one has z(2s
1 2t 1 6) 5 z(0) 5 21/2. There, one has a contribu-
tion to I2s(A) with

Cs,0 5 ~21 !s11~2s 1 1 !~s6 1 3s5 1 s4 2 3s3 2 2s2!/6.
(51)

(This expression is automatically zero for s < 1.) Other
than Cs,0 for s . 1, we have Cs, p 5 0 and Ls, p 5 0 for all
even p.

Poles at half-integer t, which correspond to odd values
of p, can arise from the factors, G(s 1 3/2 1 t), G(s
1 7/2 1 t), and z(2s 1 2t 1 6). At t 5 2s 2 3/2, only
G(s 1 3/2 1 t) has a pole, which gives Cs,23 5 (21)s(2s
1 1)@4z(3)/p# and Ls,23 5 0. For this term, direct
summation over s can be done analytically to yield the
compact expression
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(
s50

`

~21 !sw2sCs,23A23/~2s 1 1 !

5 4z~3 !A23/@p~1 2 w2!#,

which determines the leading-order effects of diffraction
and illustrates the breakdown of the present asymptotic
expansion as w approaches unity.

At t 5 2s 2 5/2, G(s 1 3/2 1 t) and z(2s 1 2t 1 6)
have simple poles that coincide. By expanding all factors
in the integrand to one order above lowest order, the in-
tegrand is found to have a second-order pole, a first-order
pole, and an analytic part. The residue of the first-order
pole leads to

Cs,21 5 2
~2s 1 3 !~2s 1 1 !3~2s 2 1 !~21 !s

24p

3 F22g 2 2 loge 2 1
11

3
2 cS s 1

5

2 D
2 cS s 1

3

2 D 2 cS s 1
1

2 D 2 cS s 2
1

2 D G
(52)

and

Ls,21 5 1
~2s 1 3 !~2s 1 1 !3~2s 2 1 !~21 !s

12p
. (53)

The identity c (1/2 1 s) 5 c (1/2 2 s) for integer s was
used to set the coefficient of s to 11 in the arguments of
all digamma functions, simplifying summation of Cs,21
over s.

At t 5 2s 2 7/2 2 t, with t 5 0,1,2,... , both G(s
1 3/2 1 t) and G(s 1 7/2 1 t) have simple poles. By a
process just like that above, we may deduce all remaining
terms. After simplifying and using the reflection formu-
las G(z)G(2z) 5 2p/@z sin(p z)#12 and z(1 2 z)
5 2(2p)2zG(z)cos(p z/2)z(z),13 as well as the doubling
formula 22z21G(z)G(z 1 1/2) 5 G(1/2)G(2z),14 the fol-
lowing result can be obtained. If we introduce a prefac-
tor that does not depend on s,

Pt 5
~21 !t11z~21 2 2t!G~25/2 2 t!G~21/2 2 t!

~2p!222tt!~2 1 t!!

5
8z~2 1 2t!

p312tG~6 1 2t!
, (54)

and a further prefactor

Qs,t 5 ~21 !s~2s 1 1 !FG~s 1 7/2 1 t!G~s 1 5/2 1 t!

G~s 2 1/2 2 t!G~s 2 3/2 2 t!
G

5
~21 !s~2s 1 1 !

2814t ~2s 1 2t 1 5 !@~2s 1 2t 1 3 !...

3 ~2s 2 2t 2 1 !#2~2s 2 2t 2 3 !, (55)

we may write
Cs,112t 5 PtQs,t@ c ~25/2 2 t! 1 c ~21/2 2 t!

1 c ~3 1 t! 1 c ~1 1 t! 1 2 loge 2

1 2z8~21 2 2t!/z~21 2 2t!

2 c ~s 1 7/2 1 t! 2 c ~s 1 5/2 1 t!

2 c ~s 2 1/2 2 t! 2 c ~s 2 3/2 2 t!#

(56)

and Ls,112t 5 22PtQs,t . Here the logarithmic deriva-
tive of the Riemann zeta function may be found by taking
the logarithmic derivative of the reflection formula, rear-
ranging to get

z8~1 2 z !/z~1 2 z ! 5 loge 2p 2 c ~z ! 1 ~p/2!tan~pz/2!

2 z8~z !/z~z !, (57)

and setting z 5 2 1 2t. For convenience and as a refer-
ence, the values and derivatives of the Riemann zeta
function are given in Table 1 for several even positive in-
tegers, and the values of Cs, p and Ls, p are given in Tables
2 and 3 for low values of s and p.

4. EVALUATION OF LX(v, w) AND
FX(A, w)
Defining g 5 (w 1 1/w)/2, we have

2@Y1~v/w, v !cos~ gv ! 1 Y2~v/w, v !sin~ gv !#

5 exp~2igv !F(
s50

`

~21 !sw112s~1 1 2s !J112s~v !

1 i(
s50

`

~21 !sw212s~2 1 2s !J212s~v !G 1 c.c. (58)

Here c.c. denotes complex conjugate. Using 2mJm(v)/v
5 Jm21(v) 1 Jm11(v), we have

Table 1. Values and Derivatives of Riemann Zeta
Function for Lowest Even Positive Integers

z z(z) z8(z)

2 1.64493407 3 10100 29.37548254 3 10201

4 1.08232323 3 10100 26.89112659 3 10202

6 1.01734306 3 10100 21.28521651 3 10202

8 1.00407736 3 10100 22.90195255 3 10203

10 1.00099458 3 10100 26.97033008 3 10204

12 1.00024609 3 10100 21.71382846 3 10204

14 1.00006125 3 10100 24.25414934 3 10205

16 1.00001528 3 10100 21.06024420 3 10205

18 1.00000382 3 10100 22.64700298 3 10206

20 1.00000095 3 10100 26.61353021 3 10207

22 1.00000024 3 10100 21.65294254 3 10207
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Table 2. Nontrivial Values of Cs, p for Small s and p

p C0,p C1,p C2,p C3,p

23 11.53050638 3 10100 24.59151915 3 10100 17.65253192 3 10100 21.07135447 3 10101

21 19.20438559 3 10202 12.23211420 3 10100 17.33114044 3 10101 27.53412869 3 10102

0 10.00000000 3 10100 10.00000000 3 10100 21.20000000 3 10102 11.68000000 3 10103

1 28.01181727 3 10203 14.09726996 3 10201 13.95398202 3 10101 28.54352726 3 10102

3 22.08826878 3 10204 13.31508756 3 10203 23.34646070 3 10201 26.24723505 3 10101

5 22.34849116 3 10205 12.41611740 3 10204 25.58423250 3 10203 11.02514511 3 10100

7 24.87331641 3 10206 14.05463902 3 10205 25.34637337 3 10204 12.04274104 3 10202

9 21.26915661 3 10206 19.98218891 3 10206 21.04165740 3 10204 12.20276108 3 10203

11 21.60469958 3 10208 11.45437724 3 10206 22.38254603 3 10205 14.50795605 3 10204

13 11.01558907 3 10206 23.93002162 3 10206 17.35485758 3 10206 17.21975567 3 10205

15 12.92228373 3 10206 21.24540385 3 10205 14.05647409 3 10205 21.30219534 3 10204

17 18.04269637 3 10206 23.41875692 3 10205 11.13805012 3 10204 24.38836368 3 10204

19 12.45164507 3 10205 21.02368062 3 10204 13.30642482 3 10204 21.24676633 3 10203

21 18.54734618 3 10205 23.49715595 3 10204 11.08609035 3 10203 23.88204256 3 10203
2@Y1~v/w, v !cos~ gv ! 1 Y2~v/w, v !sin~ g/v !#

5
v exp~2igv !

2 H(
s50

`

~21 !sw112s@J2s~v ! 1 J212s~v !#

1 i(
s50

`

~21 !sw212s@J112s~v ! 1 J312s~v !#J 1 c.c.

5
vw exp~2igv !

2 F(
s50

`

~2w2!sJ2s~v !

1 iw(
s50

`

~2w2!sJ112s~v ! 1 (
s50

`

~2w2!sJ212s~v !

1 iw(
s50

`

~2w2!sJ312s~v !G 1 c.c.

5
vw exp~2igv !

2 F(
s50

`

~iw !sJs~v !

2 (
s50

`

is12wsJs12~v !G 1 c.c.

5
vw exp~2igv !

4p F E
0

2p

duS 1 2 exp~2iu!

1 2 w exp~iu!
D exp~ivx !G

1 c.c. (59)

Here we use the abbreviation x 5 cos u. Because x is an
even function of u, we have

2@Y1~v/w, v !cos~ gv ! 1 Y2~v/w, v !sin~ gv !#

5
vw exp~2igv !

8p H E
0

2p

duF 1 2 exp~2iu!

1 2 w exp~iu!

1
1 2 exp~22iu!

1 2 w exp~2iu!
Gexp~ivx !J 1 c.c.

5
vw

4p
E

0

2p

duF 1 2 exp~2iu!

1 2 w exp~iu!

1
1 2 exp~22iu!

1 2 w exp~2iu!
Gcos@v~x 2 g !#. (60)
Simplification gives

2@Y1~v/w, v !cos~ gv ! 1 Y2~v/w, v !sin~ gv !#

5
vw

p
E

0

2p

duS 1 2 x2

1 1 w2 2 2wx D cos@v~x 2 g !#. (61)

This gives the following result that is amenable to nu-
merical integration except at large v:

LX~v, w ! 5
2w2

p
E

0

2p

du
~1 2 x2!cos@v~x 2 g !#

1 1 w2 2 2wx

5
4w2

p
E

0

p

du
~1 2 x2!cos@v~x 2 g !#

1 1 w2 2 2wx
. (62)

Including only one exponential in the integration over
v to obtain FX(A, w) gives

fx~A, w !

5
w2

p
E

0

`

dvv3 exp~2Av !E
0

2p

duS 1 2 x2

1 1 w2 2 2wx D
3 exp@iv~x 2 g !# 1 c.c.

5
w

4p
S 2

d

dA D 3E
C

dz

iz F 4 2 ~z 1 1/z !2

~w 1 1/w ! 2 ~z 1 1/z !
G

3 F 1

L 2 i~z 1 1/z !/2G 1 c.c.

5
w

2p
S 2

d

dA D 3E
C

dz

z

3
~z2 2 1 !2

~z 2 w !~z 2 1/w !~z2 1 1 1 2iLz !
1 c.c.

(63)
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Here we have introduced L 5 A 1 ig, and z is integrated
on the unit circle C in counterclockwise fashion. Includ-
ing the entire Planckian gives

FX~A, w ! 5
6w2

p
E

0

2p

du
~1 2 x2!S~A, g 2 x !

1 1 w2 2 2wx

5
12w2

p
E

0

p

du
~1 2 x2!S~A, g 2 x !

1 1 w2 2 2wx
. (64)

This is amenable to numerical integration except at small
A.

A. Evaluation of LX(v, w) at Large v
At large v we can again exploit the asymptotic behavior of
Bessel functions as we did for LB(v, w). Collecting
terms that are divided by successive inverse powers of v
gives

From this one can deduce LX(v, w).

B. Evaluation of FX(A, w) at Small A
If one evaluates the first integral in the last step of Eq.
(63) by the residue theorem, three poles contribute to the
result. These poles are at z 5 0, z 5 w, and z
5 2iL@1 2 (1 1 1/L2)1/2# 5 2iL(1 2 R). R is defined
as indicated, and L and R depend implicitly on A. Be-
cause we have g . 1 we have uLu . 1 and u1/L2u , 1, and
1 1 1/L2 and R are in a circle in the complex plane within
a distance of unity from 1. When we are finding R so

Y1~v/w, v ! 5
vw

2 S 2

pv D 1/2F S 2s0 1 4s1

v D sin~v 2 p/4! 1 S 3

1 S 15s0 1 62s1 2 160s2 2 960s3 2 1280s

64v3

Y2~v/w, v ! 5 2
v

2 S 2

pv D 1/2F S 4s1

v D sin~v 1 p/4! 1 S 2s1 1 1

2v2

1 O~v27/2!.
that z is within the unit circle, the square root is to be
taken that has a positive real part. With this sign of R, z
is within the unit circle, and with the other sign it is out-
side, because 2iL(1 2 R) and 2iL(1 1 R) are multipli-
cative inverses and the former has a smaller absolute
magnitude. It next helps to note

z2 1 1 1 2iLz 5 @z 1 iL~1 1 R !#@z 1 iL~1 2 R !#

5 z2 1 1 1 2z@iA 2 ~w 1 1/w !/2#

5 @~z 2 w !~z 2 1/w ! 1 2iAz#. (67)

To determine values of two of the residues we note that

~z2 2 1 !2

~z 2 w !~z 2 1/w !@~z 2 w !~z 2 1/w ! 1 2iAz !
U

z50

5 1,

(68)

~z2 2 1 !2

z~z 2 1/w !@~z 2 w !~z 2 1/w ! 1 2iAz !
U

z5w

5
~w2 2 1 !2

w~w 2 1/w !~2iAw !
5

w 2 1/w

2iA
. (69)

For the remaining residue, note that at z 5 2iL(1 2 R)
we have z2 2 1 5 2iLRz. This gives

1 22s1 1 48s2 1 32s3

4v2 D cos~v 2 p/4!

512s5D sin~v 2 p/4!G 1 O~v27/2!, (65)

D cos~v 1 p/4! 1 S 29s1 1 160s3 2 256s5

32v3 D sin~v 1 p/4!G
(66)
Table 3. Nontrivial Values of Ls, p for Small s and p

p L0,p L1,p L2,p L3,p

21 27.95774715 3 10202 23.58098622 3 10100 16.96302876 3 10101 24.09426091 3 10102

1 13.73019398 3 10203 21.30556789 3 10201 21.37084629 3 10101 16.33330985 3 10102

3 11.94280936 3 10204 22.44793980 3 10203 11.34636689 3 10201 12.69542651 3 10101

5 13.54157957 3 10205 23.00528323 3 10204 14.77506114 3 10203 24.34530564 3 10201

7 11.25504726 3 10205 28.54627420 3 10205 17.93582604 3 10204 21.88872660 3 10202

9 17.19037493 3 10206 24.24885791 3 10205 12.86629304 3 10204 23.70325060 3 10203

11 16.04168808 3 10206 23.23209187 3 10205 11.75751797 3 10204 21.55833260 3 10203

13 16.99301077 3 10206 23.47498843 3 10205 11.61599112 3 10204 21.10377091 3 10203

15 11.06645149 3 10205 25.00604874 3 10205 12.06659961 3 10204 21.16336551 3 10203

17 12.07225179 3 10205 29.29626269 3 10205 13.49369350 3 10204 21.69309762 3 10203

19 14.99794028 3 10205 22.16076365 3 10204 17.52587960 3 10204 23.23524283 3 10203

21 11.46499030 3 10204 26.14204007 3 10204 12.00886273 3 10203 27.82772332 3 10203

s0

4 2

6s3
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~z2 2 1 !2

z~z 2 w !~z 2 1/w !@z 1 iL~1 1 R !#
U

z52iL~12R !

5
24L2R2z2

z~22iAz !~2iLR !
U

z52iL~12R !

5 2LR/A 5 2~L2 1 1 !1/2/A. (70)

Applying knowledge of the three residues gives

fx~A, w ! 5 iwS 2
d

dA D 3S 1 1
w 2 1/w

2iA
2

~L2 1 1 !1/2

A D
1 c.c.

5 S 2
d

dA D 3Xw~w 2 1/w !

A
2

iw

A
$@~A 1 ig !2

1 1#1/2 2 @~A 2 ig !2 1 1#1/2% C. (71)

Using

@~A 1 ig !2 1 1#1/2 5 @~A 1 ig 1 i !~A 1 ig 2 i !#1/2

5 ~A 1 ig 1 i !1/2~A 1 ig 2 i !1/2

(72)

and expanding each factor according to

~A 1 ig 6 i !1/2 5 ~A 1 ig !1/2(
k50

`
~21 !kG~k 2 1/2!

k!G~21/2!

3 S 6i

A 1 ig D k

, (73)

we obtain an expansion of the form

@~A 1 ig !2 1 1#1/2 5 ~A 1 ig !(
k50

`

Ck~A 1 ig !2k

5 A 1 ig 1 (
k50

` Ck12

k! S d

d~ig !
D k

3
1

A 1 ig
. (74)

By symmetry Ck is zero for odd k. Similar analysis gives

@~A 2 ig !2 1 1#1/2 5 ~A 2 ig !(
k50

`

Ck~A 2 ig !2k

5 A 2 ig 1 (
k50

` Ck12

k! S d

d~ig !
D k

3
1

A 2 ig
, (75)

which exploits equivalence of even numbers of differentia-
tion with respect to 2ig or 1ig.

Combining the results yields
iw

A
$@~A 1 ig !2 1 1#1/2 2 @~A 2 ig !2 1 1#1/2%

5 2
2gw

A
1 iw(

k50

` Ck12

k! S d

d~ig !
D kS 1

A~A 1 ig !

2
1

A~A 2 ig !
D

5 2
2gw

A
1 iw(

k50

` Ck12

k! S d

d~ig !
D kS 1

ig D
3 S 2

A
2

1

A 1 ig
2

1

A 2 ig D , (76)

and therefore

fx~A, w ! 5 6H w~w 2 1/w !

A4 1
2w

A4

3 Fg 2 i(
k50

` Ck12

k! S d

d~ig !
D k 1

igG
1 iw(

k50

` Ck12

k! S d

d~ig !
D kS 1

ig D F 1

~A 1 ig !4

1
1

~A 2 ig !4G J . (77)

From Eq. (74) the second term may be recognized as

2w

A4 Fg 2 i(
k50

` Ck12

k! S d

d~ig !
D k 1

igG
5 2

2iw

A4 F ig 1 (
k50

` Ck12

k! S d

d~ig !
D k 1

igG
5 22iw@~ig !2 1 1#1/2/A4

5 2w~ g2 2 1 !1/2/A4. (78)

Ambiguity as to which sign of square root to take is re-
moved by considering the limit of large g. On simplifica-
tion, the first term and second term cancel, to give

fX~A, w ! 5 6iw(
k50

` Ck12

k! S d

d~ig !
D kS 1

ig D S 1

~A 1 ig !4

1
1

~A 2 ig !4D , (79)

which implies

FX~A, w ! 5 6iw(
k50

` Ck12

k! S d

d~ig !
D k S~A, g !

ig
. (80)

For small A/g the relation S(A, g) ; 2g24

1 O@exp(22pg/A)# implies that
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FX~A, w ! ; 2
iw

4 S d

dg D 4

(
k50

` Ck12

k! S d

d~ig !
D k 1

ig

; 2
iw

4 S d

dg D 4

$@~ig !2 1 1#1/2 2 ig%

; 6
w

4 S d

dg D 4

@ g2 2 1#1/2

; 2
96w6~1 1 3w2 1 w4!

~1 2 w2!7 . (81)

It is clear which sign of the square root to take, because
one should obtain a negative result in the limit of small
A/g.

5. EXAMPLE APPLICATION
As an example by which the above results can be tested,
we consider the PMO6 absolute radiometer described by
Brusa and Fröhlich.15 This instrument is used in abso-
lute solar radiometry. The radiometer entrance pupil is
defined by a 5-mm-diameter aperture, and the entrance
pupil is set back 95.4 mm behind an 8.5-mm-diameter,
view-limiting aperture that helps reduce effects of un-
wanted radiation on measurements. There are also
other baffles between these two apertures that should not
contribute to first-order diffraction effects. Meanwhile,
the sun and the distance to the sun are the remaining
geometrical parameters of interest. For these one has
Ra 5 4.25 mm, Rd 5 2.5 mm, dd 5 95.4 mm, ds ' 1.5
3 1014 mm, and Rs ' 6.75 3 1011 mm.

Suppose we assume a solar surface temperature of
5900 K. To test the formulas derived in this work, we
may for sake of illustration assume that all of the above
parameters are exact. Because the parameters actually
have uncertainties, the diffraction effects will also have a
concomitant component of uncertainty, but we wish to
consider only the component of uncertainty from using
the asymptotic formulas derived here. The diffraction ef-
fects on total power reaching the radiometer are esti-
mated to be a relative enhancement of 0.0012798062 (or
about 0.13% excess flux). This same result was found to
all digits shown by use of the small-A formulas (including
terms up to and including those for t 5 10) and by nu-
merical evaluation of necessary integrals. For such accu-
racy, at present the integration required about 6000
Gauss–Chebyshev quadrature points for each integration
over u or u8, which demonstrates the practical advantage
of the small-A formulas in the case of the double integra-
tion. Ten Gauss–Chebyshev quadrature points proved
adequate for the integration over x in Eq. (6).

If one models diffraction effects on total power by using
the effective-wavelength approximation, diffraction ef-
fects on spectral power at leff 5 c2z(3)/@3z(4)T#
' 902.7920426 nm are estimated to be a relative en-
hancement of 0.001165550 by the large-v formulas and by
numerical evaluation of necessary integrals, with the
added approximation of using 20 Gauss–Chebyshev
quadrature points for the integration over x found in Eq.
(6). (This quadrature is not fully converged, but it allows
for a test of the asymptotic formulas.) Regarding the
other aspects of integration, about 1000 quadrature
points for each integration over u or u8 were required to
obtain all digits shown. These results also indicate the
care that must be taken when one is considering use of
the effective-wavelength approximation, and additional
disadvantages such as poor convergence of integration by
quadrature in Eq. (6). When used naı̈vely, as it would be
in this case, the effective-wavelength approximation fails
to realize near self-cancellation of oscillations in diffrac-
tion effects as a function of wavelength when one has a
broadband source like the sun. On the other hand, in-
cluding only the nonoscillatory term of the large-v for-
mula for LB(v, w) proportional to v21 gives 0.001271978,
and including the nonoscillatory term proportional to v23

in addition gives 0.001271946.

The author’s e-mail address is eric.shirley@nist.gov.
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